孙诗曼,崔茂凯,李庆杨,周凌原,汤富彬,刘毅华.采后干燥对油茶籽油脂质轮廓的影响[J].中国粮油学报,2025,40(8):106-112
采后干燥对油茶籽油脂质轮廓的影响
Effect of post-harvest drying on lipid profile of Camellia oil
投稿时间:2024-09-13  修订日期:2024-12-30
DOI:
中文关键词:  油茶籽油  干燥  脂质组学  脂质轮廓  品质
英文关键词:camellia oil  drying  lipidomics  lipid profile  quality
基金项目:浙江省“领雁”研发攻关计划(2023C02045)
作者单位邮编
孙诗曼 中国林业科学研究院亚热带林业研究所 311400
崔茂凯 中国林业科学研究院亚热带林业研究所 
李庆杨 中国林业科学研究院亚热带林业研究所 
周凌原 中国林业科学研究院亚热带林业研究所 
汤富彬 中国林业科学研究院亚热带林业研究所 
刘毅华* 中国林业科学研究院亚热带林业研究所 311400
摘要点击次数: 59
全文下载次数: 0
中文摘要:
      本研究运用脂质组学技术,对油茶籽油三种不同干燥方式(冷冻干燥、热风干燥与自然干燥)下脂质轮廓进行了全面分析,并借助正交偏最小二乘判别分析(OPLS-DA)揭示了干燥温度对脂质组成差异的影响。结果表明:油茶籽油中共鉴定出5大类、23个脂质亚类、167种脂质成分。干燥对链长和不饱和度具有显著影响,尤其是中短链(碳链长度介于8至40之间)的变异系数达到了156.54%。鉴定出35种温度敏感脂质(TSPs),变异倍数为0.04 ~ 91.54。其中冷冻干燥下,甘油二酯(DG)、二酰甘油葡萄糖醛酸(DGGA)和磷脂酰乙醇胺(PE)等脂质的含量显著增加1.08倍 ~ 12.86倍,脂质单体中MGDG(18:2_18:3)、MGDG(18:1_18:2)和MGDG(18:1_18:1)上调倍数分别为71.04、12.03和11.62。热风干燥则显著提升了磷脂酸(PA)、溶血磷脂酰乙醇胺(LPE)和溶血磷脂酸(LPA)脂质的含量3.27倍 ~ 7.50倍,脂质单体中PEtOH(18:1_18:1)、PEtOH(16:0_18:1)和Cer(18:0;2O/16:0)上调倍数分别为91.54、76.22和52.18。此外,本研究还确认了干燥主要影响与脂质变化密切相关的五条关键脂质代谢途径。这些成果将为油茶籽油干燥方式的选择及其加工工艺的优化提供宝贵的科学依据。
英文摘要:
      The study utilized lipidomic techniques to conduct a comprehensive analysis of the lipid profiles of camellia oil subjected to three distinct drying methods: freeze-drying (FD), hot-air drying (HD), and natural drying (ND). Orthogonal partial least squares discriminant analysis (OPLS-DA) was employed to clarify the influence of drying temperature on lipid composition. Results revealed the identification of 167 lipids belonging to 23 subclasses across 5 lipid categories in camellia oil. Drying significantly influenced chain length and unsaturation degree, with the coefficient of variation for medium and short-chain lipids (carbon chain length between 8 and 40) reaching 156.54%. The study identified 35 temperature sensitive lipids (TSPs) with fold changes ranging from 0.04 to 91.54. Under freeze-drying conditions, the content of lipids such as DG, DGGA, and PE increased significantly by 1.08 to 12.86 fold. Notably, individual lipid species MGDG (18:2_18:3), MGDG (18:1_18:2), and MGDG (18:1_18:1) were upregulated by 71.04, 12.03, and 11.62 fold, respectively. Hot-air drying significantly enhanced the content of PA, LPE, and LPA lipids by 3.27 to 7.50 fold. Individual lipid species PEtOH (18:1_18:1), PEtOH (16:0_18:1), and Cer (18:0;2O/16:0) exhibited remarkable upregulation by 91.54, 76.22, and 52.18 fold, respectively. Furthermore, the study identified five key lipid metabolic pathways closely associated with lipid changes during the drying process. These findings provide valuable scientific insights for the selection of appropriate drying methods and optimization of processing techniques for camellia oil, potentially contributing to enhanced oil quality and processing efficiency in the industry.
关闭